

Making Music With Shaders

Practical additive GPU audio synthesis

@seecce
Pekka Väänänen

https://twitter.com/seecce

Who I Am

Pekka Väänänen a.k.a. cce/Peisik

PC Demoscener since ~2010

Archytas (2011)

Järjen Valo (2014)

Crimson (2014)

http://www.pouet.net/prod.php?which=58031
http://www.pouet.net/prod.php?which=62467
http://www.pouet.net/prod.php?which=63857

Who Are You?

● This talk is from a practical perspective.
– The synth can be coded with just basic math skills.

● You should already be familiar with shaders :)
● Example code is written for ShaderToy.

https://www.shadertoy.com/

Talk Structure

1. Motivation & Problem Statement

2. The Sine Wave

3. Harmony

4. Making Music & More Waveforms

5. The Phat Pad

6. Q&A

Problem Statement

Pheromone (2016)

● Write a simple synthesizer and a song that fit in small size.
● Do everything inside a single fragment shader.

– This is exactly how ShaderToy does it!

(The final intro file
size was ~22 KiB)

http://www.pouet.net/prod.php?which=67435

A Digital Waveform

Values range from [-1, 1].

Signal consists of
discrete samples,
usually @ 44.1 KHz

Fragment Shader

● Each pixel corresponds to one sample in the
signal.

● Write to a 32-bit float image and play it as
audio.

Framebuffer

Interpretation as audio

sin(2π * t)
Time in secondsThe period of a sine function

Amplitude

t
The whole period of a sine wave

A Sine Wave

Multiply time to get any frequency f (in hertz):

sin(2π * t * f)

The Simplest Audio Shader

#define PI 3.1415926536

vec2 mainSound(float t)

{

 float s = sin(2.0*PI *440.0*t);

 return vec2(s);

}

Source code on ShaderToy

Time in seconds

Tone frequency in hertz

ShaderToy expects stereo audio

https://www.shadertoy.com/view/4dySRc

Measuring Music

●Each octave is divided into 12
semitones.

●Frequency doubles every octave.

Pitch To Frequency

A4 key: pitch(0) = 440 Hz

● pitch(p) returns the frequency of the
note p.
– p is in semitones relative to A4.

pitch(7) = 659.25 Hzpitch(-9) = 261.63 Hz

Pitch To Frequency Formula
● pitch(p) returns the frequency of the

note p.
– p is in semitones relative to A4.

pitch (p) = (2
1
12)

p

⋅440Hz

The 2nd Simplest Audio Shader

float pitch(float p) {

return pow(1.059460646483, p) * 440.0;

}

vec2 mainSound(float t) {

 float f = pitch(0.0); // Play A4 note.

 float s = sin(2.0*PI * f * t);

 return vec2(s);

}

Source code on ShaderToy

https://www.shadertoy.com/view/XdySRc

Mixing Signals

Mixing two signals means just adding them
together.

Semitones of a Chord

Let's see how an A-minor chord is
played...

pitch(3)pitch(0) pitch(7)

Aha! Let's just play tones 0, 3 and 7 at the same time.

Spectrogram View

Note how the tones match the
keys on the keyboard

vec2 mainSound(float t) {

 float s =

 sin(2.0*PI * pitch(0.0) * t)

 + sin(2.0*PI * pitch(3.0) * t)

 + sin(2.0*PI * pitch(7.0) * t);

 return vec2(s * 0.3); // lower volume

}

A-minor chord in GLSL

Source code on ShaderToy

The three semitone
offsets from last slide

https://www.shadertoy.com/view/XsGSRc

Linear Envelopes

max(0, 1 – t) * signal

● To repeat once per second use fract:
max(0, 1 – fract(t)) * signal

Actually ranges from
[0, 1] unlike signal

Two Linear Envelopes

● Add some fade-in:

min(1, t) * signal

● Add a multiplier for faster rise:

min(1, t * 40) * signal

Envelopes Example

vec2 mainSound(float t) {

 float f = pitch(0.0); // Play A4 note.

 float s = sin(2.0*PI * f * t);

 // Decay (fade out)

 s *= max(0., 1.0 - fract(t));

 // Attack (fade in)

 s *= min(1.0, fract(t)*40.0);

 return vec2(s);

}

Source code on ShaderToy

Can be used to fade in/out individual
notes, instrument tracks or whole
song parts

https://www.shadertoy.com/view/XsySRc

Additive Synthesis

● Fourier theorem: We can
construct complex
periodic functions by just
summing sines.

● Classic examples:

triangle, sawtooth, square

https://en.wikipedia.org/wiki/Triangle_wave
https://en.wikipedia.org/wiki/Sawtooth_wave
https://en.wikipedia.org/wiki/Square_wave#Examining_the_square_wave

A Boring Saw Wave

float saw(float phase) {

 float s = 0.0;

 for (int k = 1; k <= 8; k++) {

 s += (sin(2.0*PI*float(k)*phase) / float(k));

 }

 return (1.0/2.0) - (1.0/PI)*s - 0.5;

}

vec2 mainSound(float t) {

 float s = saw(t*440.0) * 0.8;

 return vec2(s);

}

Only eight partials here,
add more for a closer
approximation.

Source code on ShaderToy

https://www.shadertoy.com/view/XdyXRc

440 Hz

Partials
Approximation causes
small ripples

Floating point
accuracy problems :(

How do we get a sound like this?

Plan of Attack

● Play multiple detuned sawtooths in unison.
– The slight frequency difference gives a warm

oscillation effect.

● Just a few of them is enough though.

A single saw with 40 partials Four detuned saws in
unison, a ”supersaw”

The Phat Pad
vec2 mainSound(float t) {

 float s = 0.0; float semitones[4];

 semitones[0] = 0.0; semitones[1] = 4.0;

 semitones[2] = 7.0; semitones[3] = 9.0;

 const int VOICES = 4;

 for (int i = 0 ; i < 4; i++) {

 float f = pitch(-24.0 + semitones[i]);

 const int UNISON = 4;

 for (int u = 0; u < UNISON; u++) {

 float fu = float(u);

 float new_f = f + fu * sin(fu);

 s += saw(t * new_f) * (1.0/float(UNISON))

 * (1.0/float(VOICES));

 }

 }

 return vec2(s);

}

Source code on ShaderToy

https://www.shadertoy.com/view/4syXRc

The Phat Pad
vec2 mainSound(float t) {

 float s = 0.0; float semitones[4];

 semitones[0] = 0.0; semitones[1] = 4.0;

 semitones[2] = 7.0; semitones[3] = 9.0;

 const int VOICES = 4;

 for (int i = 0 ; i < 4; i++) {

 float f = pitch(-24.0 + semitones[i]);

 const int UNISON = 4;

 for (int u = 0; u < UNISON; u++) {

 float fu = float(u);

 float new_f = f + fu * sin(fu);

 s += saw(t * new_f) * (1.0/float(UNISON))

 * (1.0/float(VOICES));

 }

 }

 return vec2(s);

}

Source code on ShaderToy

Store four semitone
offsets that make up
a chord

https://www.shadertoy.com/view/4syXRc

The Phat Pad
vec2 mainSound(float t) {

 float s = 0.0; float semitones[4];

 semitones[0] = 0.0; semitones[1] = 4.0;

 semitones[2] = 7.0; semitones[3] = 9.0;

 const int VOICES = 4;

 for (int i = 0 ; i < 4; i++) {

 float f = pitch(-24.0 + semitones[i]);

 const int UNISON = 4;

 for (int u = 0; u < UNISON; u++) {

 float fu = float(u);

 float new_f = f + fu * sin(fu);

 s += saw(t * new_f) * (1.0/float(UNISON))

 * (1.0/float(VOICES));

 }

 }

 return vec2(s);

}

Source code on ShaderToy

Loop through the
four voices

Read pitch from array

https://www.shadertoy.com/view/4syXRc

The Phat Pad
vec2 mainSound(float t) {

 float s = 0.0; float semitones[4];

 semitones[0] = 0.0; semitones[1] = 4.0;

 semitones[2] = 7.0; semitones[3] = 9.0;

 const int VOICES = 4;

 for (int i = 0 ; i < 4; i++) {

 float f = pitch(-24.0 + semitones[i]);

 const int UNISON = 4;

 for (int u = 0; u < UNISON; u++) {

 float fu = float(u);

 float new_f = f + fu * sin(fu);

 s += saw(t * new_f) * (1.0/float(UNISON))

 * (1.0/float(VOICES));

 }

 }

 return vec2(s);

}

Source code on ShaderToy

Process the unison voices

A hacky detune term

https://www.shadertoy.com/view/4syXRc

The Phat Pad
vec2 mainSound(float t) {

 float s = 0.0; float semitones[4];

 semitones[0] = 0.0; semitones[1] = 4.0;

 semitones[2] = 7.0; semitones[3] = 9.0;

 const int VOICES = 4;

 for (int i = 0 ; i < 4; i++) {

 float f = pitch(-24.0 + semitones[i]);

 const int UNISON = 4;

 for (int u = 0; u < UNISON; u++) {

 float fu = float(u);

 float new_f = f + fu * sin(fu);

 s += saw(t * new_f) * (1.0/float(UNISON))

 * (1.0/float(VOICES));

 }

 }

 return vec2(s);

}

Source code on ShaderToy

Normalize so amplitudes add up to one,
a bit hacky

https://www.shadertoy.com/view/4syXRc

How does it sound?

● 40 * 4 * 4 = 640 sines per sample
– On a modern GPU around 20000 should still be just

fine for realtime generation.

● https://www.shadertoy.com/view/4syXRc

https://www.shadertoy.com/view/4syXRc

Practical Problems

● Floating point accuracy!
– Once the timer gets big enough there just aren't enough

bits left in the significand and we get noise.

– Bearable for < 3 minutes of audio.

● Hard to compose an elaborate song with GLSL.
– Easier to stick with repeating patterns.

● Destructive interference
– Can't just stack a ton of unison voices, all you get is

noise...

Things to Add

● Many subjects I didn't cover:
– reverbation & stereo audio

– percussion

– more elaborate waveforms
● (sawtooth waves are kinda lame)

– multiple passes to combat floating point errors

– human voice synth with formants

– perfect filters

Thanks!

Any questions?

Bonus Slides

A Boring Square Wave

float square(float phase) {

 float s = 0.0;

 for (int k=1; k<8; k++) {

 s += sin(2.0 * PI * (2.0*float(k)-1.0) * phase)

 / (2.0 * float(k) - 1.0);

 }

 return (4.0 / PI) * s;

}

vec2 mainSound(float t) {

 float s = square(t*440.0) * 0.8;

 return vec2(s);

}

Source code on ShaderToy

https://www.shadertoy.com/view/XdGXRc

Pheromone Synth GLSL Source

● Pretty messy but it's built on the basic concepts
shown here in this presentation.

● Requires desktop OpenGL, doesn't work with
WebGL.

● Writes to a RGB8 framebuffer so packing is
needed at output.

● synth.glsl

http://paste.dy.fi/ZGH

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

