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Who Are You?

● This talk is from a practical perspective.
– The synth can be coded with just basic math skills.

● You should already be familiar with shaders :)
● Example code is written for ShaderToy.

https://www.shadertoy.com/


  

Talk Structure

1. Motivation & Problem Statement

2. The Sine Wave

3. Harmony

4. Making Music & More Waveforms

5. The Phat Pad

6. Q&A



  

Problem Statement

Pheromone (2016)

● Write a simple synthesizer and a song that fit in small size.
● Do everything inside a single fragment shader.

– This is exactly how ShaderToy does it!

(The final intro file 
size was ~22 KiB)

http://www.pouet.net/prod.php?which=67435


  

A Digital Waveform

Values range from [-1, 1].

Signal consists of 
discrete samples,
usually @ 44.1 KHz



  

Fragment Shader

● Each pixel corresponds to one sample in the 
signal.

● Write to a 32-bit float image and play it as 
audio.

Framebuffer

Interpretation as audio



  

sin(2π * t)
Time in secondsThe period of a sine function

Amplitude

t
The whole period of a sine wave



  

A Sine Wave

Multiply time to get any frequency f (in hertz):

sin(2π * t * f)



  

The Simplest Audio Shader

#define PI 3.1415926536

vec2 mainSound(float t)

{

    float s = sin(2.0*PI *440.0*t);

    return vec2(s);

}

Source code on ShaderToy

Time in seconds

Tone frequency in hertz

ShaderToy expects stereo audio

https://www.shadertoy.com/view/4dySRc


  

Measuring Music

●Each octave is divided into 12 
semitones.

●Frequency doubles every octave.



  

Pitch To Frequency

A4 key: pitch(0) = 440 Hz

● pitch(p) returns the frequency of the 
note p.
– p is in semitones relative to A4.

pitch(7) = 659.25 Hzpitch(-9) = 261.63 Hz



  

Pitch To Frequency Formula
● pitch(p) returns the frequency of the 

note p.
– p is in semitones relative to A4.

pitch (p) = (2
1
12)

p

⋅440Hz



  

The 2nd Simplest Audio Shader

float pitch(float p) {

return pow(1.059460646483, p) * 440.0;

}

vec2 mainSound(float t) {

    float f = pitch(0.0); // Play A4 note.

    float s = sin(2.0*PI * f * t);

    return vec2(s);

}

Source code on ShaderToy

https://www.shadertoy.com/view/XdySRc


  

Mixing Signals

Mixing two signals means just adding them 
together.



  

Semitones of a Chord

Let's see how an A-minor chord is 
played...

pitch(3)pitch(0) pitch(7)

Aha! Let's just play tones 0, 3 and 7 at the same time.



  

Spectrogram View

Note how the tones match the 
keys on the keyboard



  

vec2 mainSound(float t) {

    float s = 

          sin(2.0*PI * pitch(0.0) * t)

        + sin(2.0*PI * pitch(3.0) * t)

        + sin(2.0*PI * pitch(7.0) * t);

      

    return vec2(s * 0.3); // lower volume

}

A-minor chord in GLSL

Source code on ShaderToy

The three semitone 
offsets from last slide

https://www.shadertoy.com/view/XsGSRc


  

Linear Envelopes

max(0, 1 – t) * signal

● To repeat once per second use fract: 
max(0, 1 – fract(t)) * signal 

Actually ranges from 
[0, 1] unlike signal



  

Two Linear Envelopes

● Add some fade-in:

min(1, t) * signal

● Add a multiplier for faster rise:

min(1, t * 40) * signal



  

Envelopes Example

vec2 mainSound( float t ) {

    float f = pitch(0.0); // Play A4 note.

    float s = sin(2.0*PI * f * t);

    // Decay (fade out)

    s *= max(0., 1.0 - fract(t));

    // Attack (fade in)

    s *= min(1.0, fract(t)*40.0);

    return vec2( s );

}

Source code on ShaderToy

Can be used to fade in/out individual 
notes, instrument tracks or whole 
song parts

https://www.shadertoy.com/view/XsySRc


  

Additive Synthesis

● Fourier theorem: We can 
construct complex 
periodic functions by just 
summing sines.

● Classic examples: 

triangle, sawtooth, square

https://en.wikipedia.org/wiki/Triangle_wave
https://en.wikipedia.org/wiki/Sawtooth_wave
https://en.wikipedia.org/wiki/Square_wave#Examining_the_square_wave


  

A Boring Saw Wave

float saw(float phase) {

    float s = 0.0;

    for (int k = 1; k <= 8; k++) {

        s += (sin(2.0*PI*float(k)*phase) / float(k));

    }

    return (1.0/2.0) - (1.0/PI)*s - 0.5;

}

vec2 mainSound(float t) {

    float s = saw(t*440.0) * 0.8;

    return vec2(s);

}

Only eight partials here, 
add more for a closer 
approximation.

Source code on ShaderToy

https://www.shadertoy.com/view/XdyXRc


  

440 Hz

Partials
Approximation causes 
small ripples

Floating point 
accuracy problems :(



  

How do we get a sound like this?



  

Plan of Attack

● Play multiple detuned sawtooths in unison.
– The slight frequency difference gives a warm 

oscillation effect.

● Just a few of them is enough though.



  

A single saw with 40 partials Four detuned saws in 
unison, a ”supersaw”



  

The Phat Pad
vec2 mainSound(float t) {

    float s = 0.0; float semitones[4]; 

    semitones[0] = 0.0; semitones[1] = 4.0; 

    semitones[2] = 7.0; semitones[3] = 9.0;

    

    const int VOICES = 4;

    for (int i = 0 ; i < 4; i++) {

        float f = pitch(-24.0 + semitones[i]);

        const int UNISON = 4;

        for (int u = 0; u < UNISON; u++) {

            float fu = float(u);

            float new_f = f + fu * sin(fu);

           s += saw(t * new_f) * (1.0/float(UNISON)) 

                                 * (1.0/float(VOICES));

        }

    }

    return vec2(s);

}

Source code on ShaderToy

https://www.shadertoy.com/view/4syXRc


  

The Phat Pad
vec2 mainSound(float t) {

    float s = 0.0; float semitones[4]; 

    semitones[0] = 0.0; semitones[1] = 4.0; 

    semitones[2] = 7.0; semitones[3] = 9.0;

    

    const int VOICES = 4;

    for (int i = 0 ; i < 4; i++) {

        float f = pitch(-24.0 + semitones[i]);

        const int UNISON = 4;

        for (int u = 0; u < UNISON; u++) {

            float fu = float(u);

            float new_f = f + fu * sin(fu);

           s += saw(t * new_f) * (1.0/float(UNISON)) 

                                 * (1.0/float(VOICES));

        }

    }

    return vec2(s);

}

Source code on ShaderToy

Store four semitone 
offsets that make up 
a chord

https://www.shadertoy.com/view/4syXRc


  

The Phat Pad
vec2 mainSound(float t) {

    float s = 0.0; float semitones[4]; 

    semitones[0] = 0.0; semitones[1] = 4.0; 

    semitones[2] = 7.0; semitones[3] = 9.0;

    

    const int VOICES = 4;

    for (int i = 0 ; i < 4; i++) {

        float f = pitch(-24.0 + semitones[i]);

        const int UNISON = 4;

        for (int u = 0; u < UNISON; u++) {

            float fu = float(u);

            float new_f = f + fu * sin(fu);

           s += saw(t * new_f) * (1.0/float(UNISON)) 

                                 * (1.0/float(VOICES));

        }

    }

    return vec2(s);

}

Source code on ShaderToy

Loop through the 
four voices

Read pitch from array

https://www.shadertoy.com/view/4syXRc


  

The Phat Pad
vec2 mainSound(float t) {

    float s = 0.0; float semitones[4]; 

    semitones[0] = 0.0; semitones[1] = 4.0; 

    semitones[2] = 7.0; semitones[3] = 9.0;

    

    const int VOICES = 4;

    for (int i = 0 ; i < 4; i++) {

        float f = pitch(-24.0 + semitones[i]);

        const int UNISON = 4;

        for (int u = 0; u < UNISON; u++) {

            float fu = float(u);

            float new_f = f + fu * sin(fu);

           s += saw(t * new_f) * (1.0/float(UNISON)) 

                                 * (1.0/float(VOICES));

        }

    }

    return vec2(s);

}

Source code on ShaderToy

Process the unison voices

A hacky detune term

https://www.shadertoy.com/view/4syXRc


  

The Phat Pad
vec2 mainSound(float t) {

    float s = 0.0; float semitones[4]; 

    semitones[0] = 0.0; semitones[1] = 4.0; 

    semitones[2] = 7.0; semitones[3] = 9.0;

    

    const int VOICES = 4;

    for (int i = 0 ; i < 4; i++) {

        float f = pitch(-24.0 + semitones[i]);

        const int UNISON = 4;

        for (int u = 0; u < UNISON; u++) {

            float fu = float(u);

            float new_f = f + fu * sin(fu);

           s += saw(t * new_f) * (1.0/float(UNISON)) 

                                 * (1.0/float(VOICES));

        }

    }

    return vec2(s);

}

Source code on ShaderToy

Normalize so amplitudes add up to one, 
a bit hacky

https://www.shadertoy.com/view/4syXRc


  

How does it sound?

● 40 * 4 * 4 = 640 sines per sample
– On a modern GPU around 20000 should still be just 

fine for realtime generation.

● https://www.shadertoy.com/view/4syXRc

https://www.shadertoy.com/view/4syXRc


  

Practical Problems

● Floating point accuracy!
– Once the timer gets big enough there just aren't enough 

bits left in the significand and we get noise.

– Bearable for < 3 minutes of audio.

● Hard to compose an elaborate song with GLSL.
– Easier to stick with repeating patterns.

● Destructive interference
– Can't just stack a ton of unison voices, all you get is 

noise...



  

Things to Add

● Many subjects I didn't cover:
– reverbation & stereo audio

– percussion

– more elaborate waveforms
● (sawtooth waves are kinda lame)

– multiple passes to combat floating point errors

– human voice synth with formants

– perfect filters



  

Thanks!

Any questions?



  

Bonus Slides



  

A Boring Square Wave

float square(float phase) {

    float s = 0.0;

    for (int k=1; k<8; k++) { 

        s += sin(2.0 * PI * (2.0*float(k)-1.0) * phase)

            / (2.0 * float(k) - 1.0);

    }

    return (4.0 / PI) * s;

}

vec2 mainSound(float t) {

    float s = square(t*440.0) * 0.8;

    return vec2(s); 

}

Source code on ShaderToy

https://www.shadertoy.com/view/XdGXRc


  

Pheromone Synth GLSL Source

● Pretty messy but it's built on the basic concepts 
shown here in this presentation.

● Requires desktop OpenGL, doesn't work with 
WebGL.

● Writes to a RGB8 framebuffer so packing is 
needed at output.

● synth.glsl

http://paste.dy.fi/ZGH
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