
Modern GPU Architecture
Graffathon, 12 June 2016
Konsta Hölttä (sooda)
System Software Engineer

Introduction

• Why so fast, how to use

• NVIDIA approach

• High-level basics with some details

• … and I’m just a kernel hacker working with Tegras,

with a hobby in computer graphics

• https://developer.nvidia.com/content/life-triangle-

nvidias-logical-pipeline

•

https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline

Recap: triangle pipeline

// (glDrawArrays / glDrawElements / …)

draw_triangles({

 x00, y00, z00,

 x01, y01, z01,

 x02, y02, z02,

 x10, y10, z10,

 x11, y11, z11,

 x12, y12, z12});

Recap: triangle pipeline

Recap: triangle pipeline

Recap: triangle pipeline

Two approaches to shading

Brief NV history

• Aug 1999: GeForce 256 (DX7, GL 1)

• …

• Nov 2006: Tesla (8800 GTX, DX10, GL 3)

• Mar 2010: Fermi (GTX 480, DX11, GL 4)

• Mar 2012: Kepler (GTX 680, DX12, GL 4.5)

• Sep 2014: Maxwell (GTX 980)

• May 2016: Pascal (GTX 1080) (GP100 Apr 2016)

GTX 1080

• 8 GB DDR5X main memory
• 320 GB/s, 256b wide

• 1733 MHz

• 2560 CUDA Cores

• 9 TFLOPS

• 180 W

vs Intel Core i7-6700K: 0.1-0.2 TFLOPS, 91 W

• Completely different designs, purposes

Super parallel work distributor

• GPUs are not magically faster CPUs

• 2560 super dumb cores

• Compare to modern CPUs good at decision-making with

branch prediction, instruction reordering and stuff

• Hiding latency with >9000 threads
• Preferably something like 9 000 000

• Don’t do that on a CPU!

• Can’t run 2560 operating systems

• CPUs optimized for low latency, GPUs for high

throughput

Thread/Warp Scheduling

• NVIDIA warp = 32 threads

• Single Instruction Multiple Threads

• i.e., every 32 threads run in lockstep

• N warps in SM, N SMs in GPC, N GPCs in GPU

• Fast HW warp schedulers

• Threads just masked out in branches

• Avoid strongly divergent code

Scheduling 1/4

Scheduling 2/4

Scheduling 3/4

Scheduling 4/4

Bad frag shader

float r, g;

if (mod(int(x) + int(y), 2) != 0)

 r = shiny_checkerboard(x, y); // big func

else

 g = shiny_checkerboard(x, y); // ran twice

• All threads “run” both, masked out ones are

discarded

(Bad example?)

float r, g, tmp;

tmp = shiny_checkerboard(x, y);

if (mod(int(x) + int(y), 2) != 0)

 r = tmp;

else

 g = tmp;

Good frag shader

vec2 rg = shiny_checkerboard(

 mod(int(x) + int(y), 2), xy);

…
vec2 shiny_checkerboard(int flag, vec2 xy) {

 return colors(xy) * vec2(flag, 1 - flag); }

• Prefer vectors
• Prefer arithmetic over branches
• “Constant” global branches are OK

• Think a demo timeline

Sum array items (CPU vs CUDA-ish)

for (i = 0; i < N; i++)

 sum += arr[i]; // depends on previous

for (t = 0; t < N/M; t++) { // parallel

 for (i = t * M; i < (t + 1) * M; i++)

 sums[t] += arr[i];

}

for (j = 0; j < N/M; j++) sum += sums[t];

Also, graphics

• The cores work with any GPGPU problem

• CUDA, {comp,geom,vert,frag} shaders

• “Registers” part of local shared memory

• Vert/frag scheduling pipe, clipping, rasterizer, zcull,

AA, several HW optimizations

• Precalc in vert shader, interpolate/prefetch for frag!

Memory is slow

• Problem even with N GB/s

• 1920*1080*60*4 = ~500 MB/s for just one buf’s pixels

• plus all intermediate postprocessing stages

• Reading vertices, textures, etc

• Latency is your enemy (100s of cycles)

• RAM? “Random” Access Memory, LOL

Prefer sequential access

• Memory accessed in batches, by warp

• Fetched in cache lines

• Also, try to keep the cache hot (>10x faster)

• Same with CPU

• AoS vs SoA

Draw call

• Internal housekeeping in the driver

• Often expensive state change in HW

• Can run in parallel

• Vulkan

From API to HW

• GFX API → Pushbuffer → Host interface →

Frontend → Primitive distributor → Cores

• I’m working with the host btw (in Tegra)

• Single command buffer in flight per engine

• Or, how the shadertoy frontpage is so heavy

• Roughly a single GL/DX context at a time (I guess)

Summary

• Think parallel & independent & concurrent

• There’s more: tessellation, display heads, color, FPS,

ctxsw, power mgmt, SLI, …

• Demo coding is more art than science
• Also, no need to always push HW limits for art

• Shader optimization is more magic than science

(unless you really think about it and know the per-

chip hardware details)

